
International Journal of Computer Trends and Technology Volume 69 Issue 4, 1-5, April 2021

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I4P101 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Caching in Amazon Web Services
Vandana Premkumar1 , Vinil Bhandari2

Technology Architect1, Director of Technology2

New York Stock Exchange, New York City, NY, United States of America.

Received Date: 23 February 2021

Revised Date: 25 March 2021

Accepted Date: 06 April 2021

Abstract - Amazon Web Services(AWS) provides various

solutions for small, medium, and enterprise-level

organizations. These solutions cover a wide range of

problems ranging from hosting a website, computing a

complex AI algorithm, storing terabytes of data. Depending

on the volume of data and the rate at which it is requested,

different caching solutions may be needed. AWS provides a

wide range of caching solutions at different stages of

architecture; this article will focus on what caching is and

different caching strategies. We will conclude the article by

providing some of the industry-standard best practices for

using caching in your architecture.

Keywords - Performance Improvement, Increased IOPS,

Reduced Cost, Low Latency, Redis.

I. INTRODUCTION

Caching is a strategy used in software architecture as a

means to store data in transient mode. In a client-server

model, the server has computing services that typically take

up most of the request time. Using caching techniques can

elevate the time and cost savings by reducing the number of

hits to backend computing services.

In order to go over different caching strategies, it is

important that we look at different AWS services at each of

the layers of architecture. We will then illustrate different

caching used at these layers to improve the performance of

the application.

II. AWS SERVICES OVERVIEW

AWS provides various services for a wide range of

applications. Following is an illustration of these services in

five-tier architecture.

A. Client

In a typical web, application clients can be a desktop

browser or a wireless device like mobiles.

B. DNS and CDN

Domain Name Service (DNS), Content Delivery

Network (CDN) is the first service that a client request

would hit. Route 53 is AWS DNS service, and Cloudfront is

AWS CDN service.

C. ASG

The request can then be optionally sent to a load

balancing service for a highly scalable application. API

Gateway helps in rate-limiting for an application

programming interface. Auto scaling groups(ASG) enable

the high availability of enterprise applications.

D. Computation Tier

Application computations are done in this layer. Some

of the services are - Elastic Cloud Compute(EC2), serverless

service like lambda, Container service like Elastic Compute

Service, Fargate.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vandana Premkumar & Vinil Bhandari / IJCTT, 69(4), 1-5, 2021

2

E. Datastore

AWS provides a wide range of storage services -

relational databases like RDS, NoSQL databases like

DynamoDB, Simple Storage Service (S3), Elastic Block

Storage (EBS), and Instance Store.

You can take a look at detailed explanations of these

services on AWS official website[1]

III. CLIENT LEVEL CACHING

If your application uses a secret manager to retrieve

secrets such as API Keys and certification, it will be a good

strategy to cache the secrets on the client. Each API call to

Secret Manager will be charged a fee; by adding cache at the

client level, the application will reduce the cost. Retrieving

the secret from the cache will help improve performance and

increase availability since the api call will not be impacted by

any network-related issues. AWS provides open-source

client-side caching for secret values. [2]

IV. ROUTE53 and CLOUDFRONT

DNS records are cached. By default, AWS does not have

Time To Live(TTL) set. We must always specify TTL for all

the records so that DNS records are cached for a specific

length of time.

Cloudfront caching allows the requests to be served

from edge locations that are closer to the client. This avoids

multiple requests to the server hence reducing the latency

and load on the server. Cloudfront Origin Shield can be used

optionally as an additional layer to increase the cache hit

ratio. Enabling the origin shield on AWS Region can help to

improve network performance. Some of the real-world use

cases where cloud front caching will be powerful

A. Borderfree

Borderfree is a leader in global e-commerce, which

provides large retailers like Macys, J.Crew, Harrods with the

technology that enables them to sell products to international

customers.[3]

B. Brightcove

Provides just-in-time packaging for video live streaming

service; caching at their CDN will help wider device reach

and reduced latency.

C. Netflix

In some companies, multiple CDN’s are needed to

diversify their content based on the country. Netflix uses 4

CDNs [4] to increase the number of points of presence.

Having caching for multiple CDNs will help limit the

workloads on the server.

V. LOAD BALANCING and API GATEWAY

AWS Load Balancers do not provide any caching

services. API Gateway provides caching to help the

performance of the Application Programming Interface

(API).

APIs can help in your B2B strategies by providing and

receiving different sources of data and services. APIs help

Software as a Service(SaaS) companies to partner with much

more traditional B2B companies.

Caching can be enabled at API Gateway by specifying

its size. We can control the way the cache key is built and the

values for TTL. If TTL is 0, caching is disabled. By default

TTL value for API caching is 300 seconds. We can set TTL

for up to 3600 seconds. Note that API caching is in the

U.S.Health Insurance Portability and Accountability Act of

1996 (HIPAA) Eligible Service. The caching can be used for

storing and transferring any Protected Health Information

(PHI)[5]. API Gateway caching is charged at an hourly rate

depending on cache size. In the case of WebSocket APIs, it

is charged based on the number of requests sent and

connection time.

Pricing Calculation Example with Caching Required.

The following table gives the price range for the GB

requirement of cache.

Vandana Premkumar & Vinil Bhandari / IJCTT, 69(4), 1-5, 2021

3

Table 1[6]

Cache Memory Size (GB) Price Per Hour

0.5 $0.02

1.6 $0.038

6.1 $0.20

13.5 $0.25

28.4 $0.50

58.2 $1.00

118.0 $1.90

237.0 $3.80

If your API needs 5 GB of cache for its data, you can

provision a 6.1 GB cache at $0.20/hr.[7]

$0.20 * 24 = $4.8/day

VI. COMPUTATION TIER

In this section, we will look at caching at the 3 most

widely used computing services of AWS – Elastic Cloud

Compute (EC2), Lambda, Elastic Container Service(ECS)

A. Elastic Cloud Compute (EC2)

There are two kinds of storage in EC2 – Instance Store

and Elastic Block storage. Instance store(ephemeral) is

similar to RAM and is ideal for temporary storage. EBS is

like a hard disk and is storing data in a more permanent

fashion, which is not lost on instance reboot. EBS is a

network-attached drive and is slower in performance when

compared to instance stores. This is the reason why it is

better to use an instance store for caching at the application

level. The ephemeral datastore is used for storing temporary

analytics calculation data such as Hadoop jobs [9].

B. Serverless Lambda

AWS Lambda Extensions was introduced on October 8

2020. [8] It is a wrapper that runs in the execution

environment of lambda. Lambda extension has access to

everything that lambda’s function has – code, environment

variables, /tmp folder of lambda. Lambda extensions provide

multiple uses, one of which is caching.

An often-used use case for lambda is to connect to a

database and serve data to API Gateway. For this lambda

function, I would need to login and get the configuration

details to access data from the database (RDS , Aurora, or

DynamoDB). In order to do so, it will need to connect to the

SSM Parameter store and load the parameters. [10]

Lambda extensions enable to cache of this information.

Caching this information at initialization time will improve

lambda function performance tremendously. Cache data is

stored in memory and not in a file. Hence, there is no need

for additional processes to maintain the lifecycle of the file.

It is more secure to cache data in memory as data is not

persisted on disk. Lambda function will need less code as it

will communicate with lambda extension using HTTP to

retrieve data. When using the lambda extension, the function

will not need additional code to access the database, secrets

manager, or local file system.

Cache extension is a Golang compiled binary, which can

have a wrapper written in NodeJs, Python, Java, etc. YAML

template is used to specify what data needs to be cached.

Following cloudwatch[10] logs show the performance

improvement made when using lambda extension. Cold start

performance improved by 62% and following requests by

80%.[10]

C. Elastic Container Service (ECS)

In 2018 AWS provided a way to configure ECS to use a

cached image to start the container instead of downloading

from the registry. Previously, ECS needed to download large

container images, which sometimes are stored outside of

AWS every time a container is started. This caused

performance to deteriorate.[11] Now, you can specify the

following parameter in the docker run command to start the

container from the cached image [12].

Vandana Premkumar & Vinil Bhandari / IJCTT, 69(4), 1-5, 2021

4

ECS_IMAGE_PULL_BEHAVIOR

 Example values: default | always | once |

 prefer-cached

 Default value: default

 If prefer-cached is mentioned, the image is used from the

cache. If there is no image in the cache, the image remotely

pulled once. Note that automated image cleanup is disabled

for the container so that cached images are not removed[12].

VII. DATASTORE

 Disk-based databases can pose a lot of latency and

scalability issues. For example, if your application is

invoking queries that take a lot of time to execute, it can slow

your requests tremendously. The response time to the client

will include query processing time, query run time, and data

retrieval speed. Scaling a database to have multiple replicas

can add to the cost of the project when compared to in-

memory cache[13]. Although relational databases provide

great data model relationships, oftentimes, it is hard to

retrieve the data view that the application needs, resulting in

reduced performance.

 Database cache can help in improving the performance of

the data retrieval from the database. Three types of database

caches are

A. Database Integrated Cache

Databases such as Aurora provide cache that is managed

within the database engine. Cache updates based on the data

updates in the database. The application tier does not control

how the cache is updated. The cons of using database

integrated cache are in regards to size and capabilities. It's

allocated with limited memory and cannot be shared with

multiple instances[13].

B. Local Cache

Local cache stores the data that is most frequently used

by the application. This limits the database hits and hence

saves network traffic, and time it takes to load data. The

disadvantage is that this cache cannot be shared if your

application is deployed in multiple EC2 instances under an

ALB. For example, on an eCommerce website, it becomes

convoluted not to share web session cart data. This challenge

can be mitigated by adopting a remote cache. The remote

cache is a separate instance that is used for caching at the

application tier by multiple instances.

C. Remote Caches

Redis and Memcached are used for remote cache. They

are typically key/value NoSQL stores. They provide up to

million requests per second per cache node.

AWS Elasticache for Redis provides high availability,

which is a must-have feature for critical applications. Remote

caches are ideal for distributed applications. There are many

benefits of using Elasticache

• Elasticache provides a sub-millisecond latency to real-

time power applications.

• Elasticache provides an ability to create user and user

group-based access by setting up Role-Based Access

Control (RBAC)[14].

• Elasticache supports Amazon’s VPC, so you can isolate

ip addresses for a more secure cache of data.

• It offers encryption in transit, at rest using AWS or

customer-managed KMS. This allows Elasticache to be

PCI compliant, HIPAA eligible, FedRAMP authorized.

• Elasticache is easily scalable. We can scale the redis

cluster up to 500 nodes and 500 shards. It allows the

addition of up to five read replicas across multiple

availability zones[14].

VIII. CONCLUSION

Caching can be applied for a wide variety of use cases.

We need to take precautions on what, where, and how the

data of our application can be cached. It’s important to

check which data is cached at what point; for example, in a

typical eCommerce website, product prices on the checkout

page should not be cached since it needs to be authoritative,

whereas prices in other pages can be cached since we can

allow a minor difference in price when a shopper in

viewing a product. It is also important to check that caching

certain data is effective. For example, it is not worth

caching data which is constantly changing. That being said,

it might seem that only your most frequently accessed data

is cached or data of an expensive operation is cached,

however in practice, the in-memory cache is widely used

and will improve your application performance

immensely[15].

APPENDIX A

There are various ways of managing sessions. The

distributed cache can be used for managing sessions. Sticky

session (session affinity) enables load balancers to tie user

sessions to a specific target. This feature helps to maintain

stateful information to provide a good continuous experience

for customers. Drawback is there may be a single point of

failure due to this approach for certain users, when there is an

outage in their target. During the scale-up scenario, traffic

may be unevenly distributed[15].

APPENDIX B

There are different caching design patterns [15]

● Lazy caching

● Write-through time-to-live

● Evictions

● The thundering herd

Vandana Premkumar & Vinil Bhandari / IJCTT, 69(4), 1-5, 2021

5

REFERENCES
[1] Explore Our Solutions., Amazon Web Services, March (2021),

http://www.amazon.com.
[2] Using the AWS-developed Open Source Client-side Caching

Components., Amazon Web Services, March (2021),

http://www.amazon.com.
[3] About Us., BorderFree, March (2021), http://www.borderfree.com
[4] Why Use Multi-CDN instead of single CDN., Globaldots, March

2021, https://www.globaldots.com/solutions/multi-cdn/
[5] Enabling API caching to enhance responsiveness, Amazon Web

Services, March (2021),

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-

gateway-caching.html
[6] Amazon API Gateway Pricing: A Comprehensive Guide, Jan (2021),

learnaws, https://www.learnaws.org/2021/01/10/api-gateway-pricing/
[7] Amazon API Gateway pricing, March (2021),

https://aws.amazon.com/api-gateway/pricing/
[8] Using AWS Lambda Extensions with Python, Dilex, Amazon Web

Services, March (2021) https://www.dilex.net/data-blog/using-aws-

lambda-extensions-with-python
[9] Backup AWS Ephemeral Storage of an EC2 Instance, n2ws, March

(2021), https://n2ws.com/blog/aws-ec2-backup/ephemeral-storage-

of-ec2-instance-part-1.

[10] Caching data and configuration settings with AWS Lambda

extensions, Amazon Web Services, (2021)

https://aws.amazon.com/blogs/compute/caching-data-and-

configuration-settings-with-aws-lambda-extensions/
[11] Amazon ECS Adds Options to Speed Up Container Launch Times,

Amazon Web Services, March 2021, https://aws.amazon.com/about-

aws/whats-new/2018/05/amazon-ecs-adds-options-to-speed-up-

container-launch-times/.
[12] Amazon ECS Container Agent Configuration, Amazon Web

Services, (2021),

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-

agent-config.html
[13] Database Caching, Amazon Web Services, March 2021

https://aws.amazon.com/caching/database-caching/.
[14] Amazon ElastiCache for Redis, Amazon Web Services, March 2021,

https://aws.amazon.com/elasticache/redis/.
[15] Caching Best Practices, Amazon Web Services, March 2021,

https://aws.amazon.com/caching/best-practices/.

